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Highlights 
• Diet can impact host-parasite outcomes in insects but there are no clear patterns. 
• Protein is beneficial in some insects, fats or carbohydrates are better in others. 
• Diet can act directly, or can change physiology, immunity or the microbiome. 
• An understanding of the mechanisms of diet-related impacts on parasites is lacking for 

most systems. 
• More studies are needed to find commonalities across host and parasite taxa. 
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Abstract 
Diet can impact the outcome of parasitic infection in three, non-mutually exclusive ways: 1) by 
changing the physiological environment of the host, such as the availability of key nutritional 
resources, the presence of toxic dietary chemicals, the pH or osmolality of the blood or gut, 2) by 
enhancing the immune response and 3) by altering the presence of host microbiota, which help 
to digest nutrients and are a potential source of antibiotics.  We show that there are no clear 
patterns in the effects of diet across taxa and that good evidence for the mechanisms by which 
diet exerts its effects are often lacking. More studies are required to understand the mechanisms 
of action if we are to discern patterns that can be generalised across host and parasite taxa.  
 
  



Introduction 
Food plays a vital role in organismal health with under- and over-nutrition contributing to 

poor health outcomes across taxa [1]. Nutrition is also important in the response to parasitic 
infection with potential direct and indirect effects of a host’s diet and nutrient stores on a 
parasite’s ability to successfully propagate in/on a host [1,2]. With diverse diets and a range of 
micro- and macro-parasites, insects are interesting models with which to address key questions 
around how dietary components can impact parasitism. In this review we use the word ‘parasite’ 
in the ecological sense, as an organism that lives in or on another organism (the host), to the 
detriment of host fitness. Using this definition, the term micro-parasite covers unicellular 
bacteria and fungi, protozoa and viruses (often referred to as pathogens), whilst macro-parasite 
covers the larger organisms such as nematode worms, that are typically considered parasites. 
 
The host as a hostile environment 

The insect host encompasses the parasite’s living environment in which it must grow and 
reproduce, and this environment can be both beneficial and costly to the parasite. Insect 
hemolymph provides an excellent example of an environment that has costs and benefits. It is 
now well established that hemolymph is the main mediator of nutritional and immunological 
homeostasis in insects. A prime location for nutrient storage [3], hemolymph contains sugars 
such as trehalose and glucose, and sugar alcohols like mannitol and sorbitol [4], free amino acids, 
as well as various peptides and proteins [3]. For a microorganism, therefore, insect hemolymph 
is the best of places because it is a nutrient-rich medium of balanced ionic composition and near-
neutral pH [5]. In contrast, the hemolymph is also the worst of places due to the presence of 
sequestered dietary chemicals, and immune components that can variously kill, engulf and 
encapsulate invading microbes [6].  Hemolymph is therefore a hostile environment for 
microorganisms, and microbiologically sterile in healthy insects [7].  

The suitability of an insect as a host depends on the parasite’s ability to access nutrients 
in the insect’s body whilst overcoming detrimental aspects of the environment to be successful 
[8], and the balance of these effects is likely to vary across taxa [9]*. These detrimental aspects 
include: the basic physiological environment, such as the balance and abundance of nutrients 
[9*,10], the presence of toxic sequestered dietary chemicals and the pH and osmolality of the 
blood or gut matrix [11,12]; the presence of host microbiota as competitors for nutrients and a 
potential source of antibiotics, but which also play a key role in digestion, thus helping to deliver 
nutrients to the host (see [13,14] for recent reviews of this topic); and the strength and rapidity 
of  the deployment of immune effectors, all of which are dependent upon or moderated by host 
diet (Figure 1). In this review we will first consider the evidence that an insect’s diet can impact 
the outcome of host-parasite interactions, examine the potential mechanisms underpinning 
these effects and finally address areas for future research. 
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Figure 1. Potential routes of action for dietary components to negatively* impact parasite 
fitness. Red lines indicate negative action and blue lines positive action. For example, a 
dietary component could have a direct toxic effect on a parasite (e.g. Octanoic acid in noni 
fruit appears to kill parasitoid wasps [15]). Alternately, a dietary component could change the 
internal physiology such that it was detrimental to parasite growth (e.g. [16]**). None of 
these mechanisms are mutually exclusive, and indeed, diet components may have negative 
effects on some components of the response (e.g. downregulate immunity [17] ), but still 
negatively impact parasites via one of the other routes.  
*It is also possible for parasite fitness to be augmented by some of these routes, e.g. direct 
metabolic benefits of dietary components on parasite growth, but those interactions are not 
considered here. 

 
Evidence for diet mediating host parasite interactions 

The quality and quantity of the diet has long been shown to impact host-parasite 
interactions across host and parasite taxa. Many studies have used starvation or energy 
restriction, or the restriction of specific dietary components in the host’s diet,  typically resulting 
poorer infection outcomes for the host in e.g. bumblebees, Bombus terrestris [18], Galleria 
mellonella waxworms [19] Culex pipiens mosquitoes [20] and Drosophila melanogaster, though 
these effects can be parasite specific e.g. [21,22]. For example, diet-restricted Drosophila flies 
had higher bacterial counts when infected with L. monocytogenes, but counts did not change for 
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either E. faecalis or S. typhimurum [21].  Other studies note that effects of dietary composition 
rather than energy content, i.e. quality rather than quantity of diet, could impact host-parasite 
interactions. High protein relative to carbohydrate diets have been shown to be beneficial to 
many insects during infection e.g. Spodoptera littoralis [23], Spodoptera exempta [24,25], 
Drosophila melanogaster larvae [26], Mormon crickets, Anabrus simplex [27], the true fruit fly, 
Bactrocerca dorsalis larvae [28]* and bumblebees, Bombus terrestris [29]. In contrast, diets high 
in carbohydrates relative to protein have been shown to improve infection outcomes for other 
hosts e.g. the Australian plague locust, Chortoicetes terminifera [30], Bactrocerca dorsalis adults 
[31]* and Drosophila melanogaster flies [32]. A diet high in fat relative to protein was beneficial 
for carnivorous burying beetles, Nicrophorus vespilloides [33], whilst high fat relative to 
carbohydrate diets have been shown to be detrimental in the field cricket, Gryllus texensis [34].  

Although most studies have focussed on the energy or macronutrient content of diets, 
the availability of micronutrients and trace elements can also impact host-parasite 
outcomes.  For example, the availability of iron in the haemolymph is an important determinant 
of micro-parasite fitness, with low iron levels reducing parasite growth rates [35**]. Similarly, 
low levels of Phosphorus in the diet result in lower replication rates of the bacteria Pasteuria 
ramosa in the waterflea, Daphnia magna [36]. Plant-derived secondary chemicals can also be 
protective against infection.  For example, woolly bear caterpillars, Grammia incorrupta, are 
more successful at fighting off parasitism by tachinid flies when pyrrolizidine alkaloids are 
incorporated into their diets [11]. Monarch butterfly larvae sequester cardenolides from 
milkweeds [12], providing protection against the protozoan parasite, Ophryocystis elektroscirrha 
[37].  

What is not clear from many of the studies above is the mechanisms behind these diet-
driven changes in host-parasite interactions. The immune response is energetically costly [38] 
and many effectors require key amino acids [39,40], so are the dietary manipulations described 
above increasing the efficacy of the host immune response? 
 
Potential mechanisms - 1. Diet can impact immune efficacy 

Immune activation is energetically costly [41,42] and protein consumption supplies 
important amino acids that are necessary for the structure of immune pathway peptides [39,43] 
and effectors such as antimicrobial peptides (AMPs) [40]. Protein production from dietary amino 
acids is costly, consuming ∼50% of the ATP in growing yeast cells [44]. Dietary carbohydrates 
supply the energy needed for metabolic actions in both humoral and cellular immune responses 
and can equip secondary plant metabolites that have antibacterial activity [45]. Recently, 
investigators have identified the role of nutrient-sensing pathways, particularly the insulin 
signalling (ILS) pathway in regulating components of the immune response [46,47]. Therefore, 
both food quality and quantity can have direct effects on the ability of the host to mount an 
effective immune response.  

In this context, deprivation of Galleria mellonella larvae of food leads to a reduction in 
cellular and humoral immune responses [19]. The hemocytes from starved larvae were as 
effective at killing Candida albicans cells as those from control larvae but they occurred at a lower 
density. In addition, hemolymph from starved larvae displayed reduced expression of AMPs  [19]. 
Mormon crickets reared on high protein diets had higher levels of the immune enzyme 
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phenoloxidase (PO), its precursor prophenoloxidase (proPO) and a stronger encapsulation 
response than those on low protein diets [27]. In Australian locusts (Chortoicetes terminifera), 
circulating haemocyte densities were greater in locusts fed on balanced or protein-biased diets 
compared to those fed carbohydrate-biased diets, whilst proPO did not differ among diet 
treatments [30]. Despite this boost to the immune response, high protein diets reduced survival 
from fungal infection. Graham et al. [30] argue that high protein and low carbohydrate substrates 
boost mycelial growth and toxin production by M. acridum, and so the fungus might use dietary 
protein circulating in the hemolymph against the locust. In adult Drosophila infected with M. 
luteus, AMP expression levels were higher on low protein diets throughout the course of infection 
[32]. However, Drosophila larvae maintained on high protein diets show an improved immune 
response as adults [48] suggesting that the impact of nutritional components on immunity may 
differ by life stage as nutritional requirements change. In black soldierfly larvae, the addition of 
proteins or plant oils, on top of the standard diet, increased AMP expression and increased 
antibacterial activity from whole body extracts [49]. 

It isn't as simple as more protein and/or more energy results in a stronger immune 
response. Cotter et al [50] systematically manipulated both the energy content and the protein 
to carbohydrate ratio (P:C) of the diet for Spodoptera littoralis caterpillars, then measured 
constitutive PO activity, lysozyme-like antibacterial activity and cuticular melanism. Whilst 
lysozyme peaked at high energy intakes, PO peaked at low energy intake on a balanced P:C diet 
and melanism increased weakly with protein [50]. A similar trend was found in the same species 
using natural plant diets; PO activity was higher on maize but antibacterial activity was lower, 
potentially mediated by its nutritional quality [51]. A recent study using Manduca sexta found 
remarkably similar results, with PO and haemocyte density both peaking at intermediate intakes, 
but at a balanced P:C for PO, and at a high P:C for haemocyte density [52]. These results show 
that different immune effectors might respond differently to the deprivation of both energy and 
specific nutrients. This was examined in more detail recently using Spodoptera littoralis 
challenged with dead or live Xenorhabdus nematophila bacteria [53]*. The expression of 4 
immune genes in control larvae correlated weakly with protein or carbohydrate intake, though 
expression after challenge with live bacteria tended to peak in similar regions of nutrient space. 
However, the expression of lysozyme and PPO, correlated poorly with the activity of lysozyme 
and PO in the haemolymph, with both traits correlating more strongly with the amount of protein 
in the diet. This suggests that immune gene expression is not necessarily a good indicator of 
immune efficacy, as translation might be dependent on amino acid availability [53]*. When 
amino acids are limiting, gene expression can still occur but the gene may not be translated until 
their availability increases [54]. 

Plant secondary compounds have also been shown to modify immune efficacy, and not 
always positively [55]. In monarchs, although cardenolides increase resistance to O. 
elektroscirrha parasites, they also downregulate a handful of immune genes in the gut and body, 
suggesting that the effect of cardenolides on the parasite is via direct toxicity [17]. A separate 
study on the same system looked at the functional antibacterial response in haemolymph from 
naive and immune stimulated caterpillars, with host plant cardenolide content having no 
significant effect on either [56]. Nicotine, in contrast, has been shown to enhance PO activity and 
encapsulation in Manduca sexta caterpillars [57]. The Anicia checkerspot butterfly, Euphydryas 
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anicia, sequesters greater amounts of the iridoid glycoside (IG), catalpol, from Penstemon glaber, 
than it does from Penstemon virgatus host plants. It also has higher PO activity on Penstemon 
glaber, but whether this is caused by the higher levels of catalpol is unclear [58]. However, the 
buckeye caterpillar, Junonia coenia, also shows an improved PO response when reared on high 
IG plants and higher survival after viral infection [59], suggesting that IGs may stimulate the PO 
response. It is clear therefore, that dietary components can both up or downregulate specific 
immune responses, but that not all immune effectors react in the same way to a dietary 
manipulation.  

 
Potential mechanisms - 2. Diet modifies the internal physiological environment 

Rather than modifying the immune response, some dietary manipulations could impact 
parasitism directly, by starving the parasite of key nutrients, or via toxicity to the parasite, or by 
changing the physiological environment, such as pH or osmolality, to harm the parasite. First, the 
parasite relies on the host for food, and so by changing the food available to the host, it may 
change the quality of the host as a nutritional resource for the parasite. This could result in the 
host having non-preferred nutrient ratios in terms of macronutrients (proteins, carbohydrates 
and fats) [60] or in terms of its elemental composition [10]. For example, microsporidian parasites 
grow less well in Daphnia magna and Daphnia galeata, kept on reduced food rations, suggesting 
that the parasite is unable to compete with the host for limiting nutrients [61]. Some parasites 
have lost the ability to synthesise key nutrients, for example glycogen in many bacteria [62], 
purines/ pyramidines in protozoa [63], cholesterols in trypanosomes and Plasmodium (reviewed 
in [64]) and so a manipulated host diet could potentially starve a parasite of specific nutrients, 
potentially enhancing some of the immune-related effects on infection outcomes cited in the 
previous section. Finally, transition metals are vital for many key biological processes and micro-
parasites rely on the availability of Iron, Zinc, Manganese and Copper in particular, for replication 
[65]. Insects can restrict the availability of these metals by shuttling them out of the blood and 
into the fat body via proteins called transferrins [66] or by chelating them such that they are not 
bio-available [65]. This has been known to occur in mammals but the immune role of transferrins 
in insects has only recently been confirmed in vivo [35]**. Drosophila use the transferrin, Tsf1, 
to shuttle iron out of the blood and into the fat body in response to bacterial infection. Tsf1 
mutant flies are more susceptible to infection and Pseudomonas aeruginosa bacteria that lack 
the iron-scavenging siderophore, pyoverdine, are successful in the Tsf1 Drosophila mutants but 
cannot infect wild type flies [35]**. 

Other dietary components show direct toxicity to parasites. For example, Orgyia antiqua 
larvae are protected from infection by Metarhizium anisopliae fungal infection when consuming 
high levels of phenolic glycosides, even though there was no marked improvement in the 
encapsulation response that acts against fungi in the haemocoel [67]. Several phytochemicals 
ingested in pollen and nectar can directly impact Crithida bombi gut parasites of bees, both in 
vivo [68] and in vitro [69], indicating direct toxicity. Drosophila sechellia preferentially breed on 
ripe noni fruit [15], which is rich in toxic octanoic acid [70]. Ripe noni extract, reduces the success 
of parasitoids attacking Drosophila flies, with adult wasps appearing to succumb to the toxin, 
reducing the parasitism rate [15].  Thus, the ability of D. sechellia to cope with the plant toxin 
appears to have reduced the need for an immune response targeted against parasitoids [15].  
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In contrast, Sun et al [71]** tested the role of glucosinolate detoxification in diamondback 
moth, Plutella xylostella, on the interaction with its endoparasitoid wasp. To do this, they used 
plant-mediated RNAi to silence the glucosinolate sulphatases that P. xylostella use to detoxify 
plant defensive glucosinolate compounds. When feeding on RNAi- modified Arabadopsis, the 
caterpillars accumulated toxic isothiocyanates, resulting in greater mortality of the 
endoparasitoid and delayed emergence of those that survived [71]**. This effect was 
independent of the immune response, PO activity was not affected by the treatment. Therefore, 
the plant defensive compounds are likely to be directly toxic to the wasp, but detoxification by 
the caterpillar provides them some protection.  

Fermentation compounds, such as alcohols, produced by bacteria and fungi are often 
toxic [72], but Drosophila fruit flies can tolerate alcohol [73]. Not only does alcohol consumption 
by Drosophila larvae deter generalist parasitoid wasps, but it increases alcohol levels in the 
haemolymph, increasing larval wasp mortality [73]. Alcohol did not increase the likelihood of 
encapsulation and resulted in a reduction in the density of the haemocyte type responsible for 
encapsulation in the haemolymph [73]. It appears, therefore, that ingested plant secondary 
compounds and alcohol can have direct negative effects on parasites attempting to grow inside 
a host. This is not surprising as these compounds have long been considered toxic, but what 
about nutritional dietary components such as proteins, fats and carbohydrates? 

A high fat/low protein diet in Nicrophorus vespilloides burying beetles increased survival 
from infection substantially, without altering the bacterial load in the haemolymph [33]. The high 
fat diet also marginally decreased PO activity, suggesting that the improved survival was not 
mediated by the immune system [33]. Instead, the high fat diet may have increased host 
tolerance of bacterial toxins which play a key role in host killing [74]. A recent study by Wilson et 
al [16]** found that a high protein diet in armyworm, Spodoptera littoralis, caterpillars increased 
resistance to Xenorhabdus nematophila bacteria. They also showed that high protein diets 
increased the level of solutes in the blood resulting in high osmolality, which is detrimental to 
bacterial growth in vivo and in vitro, irrespective of whether it is induced with proteins or salts. 
This shows a direct impact of the food eaten on pathogen growth in the insect’s body, without 
invoking the immune response [16]**.  
 
Potential mechanisms - 3. Diet affects host microbiota 

The insect gut microflora is tightly linked to diet [75] and gut microflora can impact the 
host’s ability to resist or tolerate parasites e.g. [76]. The interaction between diet, host 
microbiota and immune function has been reviewed recently (see [13,14]) and so here we will 
note recent studies that have addressed this issue.  Bactrocera dorsalis larvae, whose gut 
microbiota had been cleared, died more rapidly from infection, had reduced PO activity and 
antibacterial activity of the haemolymph and this was compounded when the protein content of 
the diet was reduced [28]*. Removing gut flora also reduced the levels of circulating haemolymph 
nutrients, suggesting that the effects on immunity may be mediated via nutrient deprivation due 
to the role of microflora in digestion [28]*. The honeybee gut microbiome is sensitive to changes 
in diet [77], and a recent study has shown that infection with the gut microsporidian, Nosema 
ceranae, was associated with gut dysbiosis [78]. Furthermore, an intact gut microbiota halved 
the daily risk of death from Deformed Wing Virus in honeybees, though it did not reduce viral 
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load, suggesting that the microbiome mediates tolerance to infection and its activity extends 
beyond the gut [79].   

Interestingly, multiple mechanisms can come together to determine the outcome of 
infection. Several studies have shown that gut microflora of mosquitoes can influence their 
susceptibility to Plasmodium (see [80] and references therein) but mechanisms were lacking. 
Mosquitoes fed supplementary glucose or trehalose showed increased susceptibility to infection, 
but only when the gut microflora was intact [81]**. Wang et al [81]** showed that these 
additional sugars increased the abundance of Asaia bogorensis in the gut, which increased the 
gut pH, increasing the rate of sexual maturation of the Plasmodium. Simultaneously, the 
additional sugars downregulated immune genes in the Imd pathway. To test whether the change 
in pH had a causative role in susceptibility to infection, mosquitoes were fed NaHCO3 to increase 
gut pH independent of diet, and the alkalisation of the gut alone was sufficient to increase oocyst 
numbers and downregulate the Imd pathway genes. Therefore, rather than diet modifying the 
immune response or changing the internal physiological conditions of the mosquito directly, the 
changes occur as a result of diet affecting the balance of gut microorganisms.  
 
Summary and future directions 

In summary, dietary components can impact parasitism in many, non-mutually exclusive 
ways, from direct toxicity, to upregulating the immune response, to changing the physiology of 
the gut or haemolymph to make it refractory to parasite growth. At present there do not appear 
to be many universal truths in this field [9*], with different effects of nutrient ratios or the 
deprivation/addition of specific dietary components, and outcomes that differ between parasite 
and host taxa, and even within host taxa across life stages. Many studies report the effect of 
nutrition on one aspect of the host or parasite, e.g. survival or the immune response, but very 
few studies systematically address the potential mechanisms underlying the response (but see 
[16**], [81**]). The task for future studies is for researchers to address how nutrition modulates 
parasite infection outcomes in their study species via detailed mechanistic studies.  Identifying 
commonalities across host and parasite taxa will further our understanding of how diet can 
impact parasitism.  
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Mosquitoes on a high sugar diet are more susceptible to plasmodium. This paper showed 
that sugars increased the abundance of a gut bacterium, which increased the gut pH, 
increasing the rate of sexual maturation of the plasmodium. Sugars also downregulated 
immune genes. Alkalising the gut pH independent of diet and gut microflora was sufficient 
to increase oocyst numbers and downregulate the Imd pathway genes. This suggests the 
gut bacterium was pivotal in mediating this response to a high sugar diet.  
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